a new approach for solving nonlinear system of equations using newton method and ham
نویسندگان
چکیده
a new approach utilizing newton method and homotopy analysis method (ham) is proposed for solving nonlinear system of equations. accelerating the rate of convergence of ham, and obtaining a global quadratic rate of convergence are the main purposes of this approach. the numerical results demonstrate the efficiency and the performance of proposed approach. the comparison with conventional homotopy method, newton method and ham shows the great freedom of selecting the initial guess, in this approach.
منابع مشابه
Solving System of Nonlinear Equations by using a New Three-Step Method
In this paper, we suggest a fifth order convergence three-step method for solving system of nonlinear equations. Each iteration of the method requires two function evaluations, two first Fr'{e}chet derivative evaluations and two matrix inversions. Hence, the efficiency index is $5^{1/({2n+4n^{2}+frac{4}{3}n^{3}})}$, which is better than that of other three-step methods. The advant...
متن کاملA new Newton-like method for solving nonlinear equations
This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteratio...
متن کاملNew quasi-Newton method for solving systems of nonlinear equations
In this paper, we propose the new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but it is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires O(n) arithmetic operations per iteration in cont...
متن کاملA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کاملA New Approach for Solving Heat and Mass Transfer Equations of Viscoelastic Nanofluids using Artificial Optimization Method
The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a c...
متن کاملA new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of numerical analysis and optimizationجلد ۴، شماره ۲، صفحات ۵۷-۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023